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The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO.
The structures of social contact critically determine the spread of the infection and, in the absence
of vaccines, the control of these structures through large-scale social distancing measures appears
to be the most effective means of mitigation. Here we use an age-structured SIR model with
social contact matrices obtained from surveys and Bayesian imputation to study the progress of the
COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization
are computed based on case data, age distribution and social contact structure. The impact of social
distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with
duration is then investigated. A three-week lockdown is found insufficient to prevent a resurgence
and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are
provided for the reduction in age-structured morbidity and mortality as a result of these measures.
Our study underlines the importance of age and social contact structures in assessing the country-
specific impact of mitigatory social distancing.

I. INTRODUCTION

The novel coronavirus, COVID-19, originated in
Wuhan and has spread rapidly across the globe. The
World Health Organization has declared it to be a pan-
demic. In the absence of a vaccine, social distancing has
emerged as the most widely adopted strategy for its mit-
igation and control [1]. The suppression of social contact
in workplaces, schools and other public spheres is the
target of such measures. Since social contacts have a
strong assortative structure in age, the efficacy of these
measures is dependent on both the age structure of the
population and the frequency of contacts between age
groups across the population. As these are geographi-
cally specific, equal measures can have unequal outcomes
when applied to regions with significantly differing age
and social contact structures. Quantitative estimates of
the impact of these measures in reducing morbidity, peak
infection rates, and excess mortality can be a significant
aid in public-health planning. This requires mathemat-
ical models of disease transmission that resolve age and
social contact structures.

In this paper we present a mathematical model of the
spread of the novel coronavirus that takes into account
both the age and social contact structure [2]. We use
it to study the impact of the most common social dis-
tancing measures that have been initiated to contain the
epidemic in India: workplace non-attendance, school clo-
sure, “janata curfew” and lockdown, the latter two of
which attempt, respectively, complete cessation of public
contact for brief and extended periods. We emphasise
that models that do not resolve age and social contact
structure cannot provide information on the differential
impact of each of these measures. This information is
vital since each of the specific social distancing measures
have widely varying economic costs. Our model allows
for the assessment of the differential impact of social dis-

tancing measures. Further, both morbidity and mortality
from the COVID-19 infection have significant differences
across age-groups, with mortality increasing rapidly in
the elderly. It is necessary therefore to estimate not only
the total number of infections but also how this num-
ber is distributed across age groups Our model allows for
the assessment of such age-structured impacts of social
distancing measures.

The remainder of our study is organized as follows. In
Section (II) we compare the age and social contact struc-
ture of the Indian, Chinese, and Italian populations. Age
distributions are sourced from the Population Pyramid
website [3] and social contact structures from the state-
of-the-art compilation of Prem et. al. [2] obtained from
surveys and Bayesian imputation. We show that even
with equal probability of infection on contact, the differ-
ences in age and social contacts in these three countries
translate into differences in the basic reproductive ratio
R0. In Section (III) we study the progress of the epi-
demic in the absence of any mitigation to provide a base-
line to evaluate the effect of mitigation. In Section (IV)
we investigate the effect of social distancing measures
and find that the three-week lockdown that commenced
on 25 March 2020 is of insufficient duration to prevent
resurgence. Alternative protocols of sustained lockdown
with periodic relaxation can reduce the infection to lev-
els where social contact tracing and quarantining may
become effective. Estimates of the reduction in morbid-
ity and mortality due to these measures are provided. We
conclude with a discussion on the possibilities and limi-
tations of our study. An appendix provide details of our
mathematical model and the social contact structure.

It has been known from retrospective analyses of the
1918–19 pandemic that delays in introducing social dis-
tancing measures are correlated with excess mortality
[4, 5]. Our study confirms the urgency and need for sus-
tained application of mitigatory social distancing.
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Figure 1. Age and contact structures of the populations of India, China and Italy. The first column shows population
pyramids by age and gender. The second and third columns show the contact structures in households and workplaces with
darker colours representing greater contacts. The diagonal dominance of these matrices shows strong assortative mixing in
all three countries. Significant differences appear in the off-diagonals. In India, the pentadiagonal character of the household
contacts reflects the prevalance of three-generation households, which are smaller in China and negligible in Italy.

II. AGE AND CONTACT STRUCTURES

In Fig.(1) we compare the age and contact structures
of the populations of India, China and Italy. The aim
of this comparison is to highlight their differences and
to emphasise the effect these have on the spread of an
infectious disease. Panels (a), (d) and (g) show the frac-
tion of the population (separated by gender) in five-year

age groups terminating at the age of eighty. The Taj
Mahal dome shape of the Indian age distribution is typ-
ical of those undergoing a demographic transition. The
narrower base of both Chinese and Italian populations is
typical of aging populations at or near sub-replacement
fertility. Panels (b), (e) and (h) show the contact be-
tween age groups in the household setting, represented
by matrices CH

ij where darker squares indicate larger con-
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Country Basic reproductive ratio

India R0 = 136β

China R0 = 117β

Italy R0 = 119β

Table I. Country-specific basic reproductive ratio of the
age-structured SIR model for fixed probability of infection on
contact β and unit rate of recovery (see text). The difference
between countries is attributed to their differing age and social
contact structures.

tacts. As noted in [2], the features common to all three
are the diagonal dominance, reflecting contact within age
groups (i.e. siblings and partners) and the prominent off-
diagonals, separated by the mean inter-generation gap,
reflecting contacts between age groups (i.e. children and
parents). The principal difference in India is the pres-
ence of a third dominant diagonal, again separated by
the mean inter-generation gap, reflecting the prevalence
of three-generation households. This quantifies the sig-
nificant contact between children and grand-parents and
the possibility of substantial of transmission of conta-
gion from third to first generations. Such contacts are
smaller in China and negligible in Italy. Panels (c), (f)
and (i) show the contact CW

ij between age groups in the
workplace. In contrast to households, the work contact
patterns are more homogeneous across age groups in all
three countries, indicating that the workplace contributes
to the transmission of contagion between age groups that
are, otherwise, largely separated from each other in the
household. The boundaries of these age groups are larger
in India and China than in Italy. The matrices CS

ij for
schools (shown for India in the appendix) are strongly as-
sortative, with primary contacts within the school-going
ages and smaller contacts between age groups reflecting
student-teacher interactions. The matrices CO

ij for other
spheres of contact (shown for India in the appendix) are
strongly assortative, reflecting the preferential social con-
tact within age groups in this sphere, but otherwise do
not show systematic patterns. In summary, then, in In-
dia the home provides the main channel of transmission
between three generations, the workplace provides the
main channel of (largely homogeneous) transmission be-
tween working age groups, the school the main channel
of transmission within children and to a smaller extent
between children and adult teachers, while other spheres
of contact, due to the assortative mixing, contribute to
transmission within age groups.

Do these differences have a quantitative impact on the
transmission of disease? We answer this affirmatively by
comparing the basic reproductive ratio R0 for each of
these populations for an infectious disease with identical
probability of infection on contact β and rate of recov-
ery γ for the age-structured SIR model described in Ap-

pendix 1. These differences underline the importance of
resolving the age and social contact structure of a popu-
lation when forecasting the progress of an infection and
the impact of social distancing measures. With this back-
ground, we now turn to our forecast for the progress of
the COVID-19 epidemic in India.

III. EPIDEMIC WITHOUT MITIGATION

We fit our mathematical model, described in detail in
Appendix, to case data to estimate the probability of
infection on contact β. Though our model allows for
infectives to be both asymptomatic and symptomatic,
given the large uncertainty in estimating asymptomatic
cases, we assume all cases to be symptomatic. A possi-
ble effect of this is to underestimate the severity of the
outbreak. We then run the model forward in time to
forecast the progress of the epidemic with results shown
in Fig. (2). Panel (a) shows the fit to case data available
upto 25th March 2020 and a three-week forecast, in the
absence of social distancing measures. The basic repro-
ductive ratio is R0 = 2.10. Panel (b) shows a five month
forecast, again, in the absence of social distancing. The
peak infection is reached at the end of June 2020 with
in excess of 150 million infectives. The total number in-
fected is estimated to be 900 million. Panel (c) shows the
time-dependent effective basic reproductive ratio Reff

0 (t)
which gives the dominant contribution to the linearised
growth at any point in time. This number is greater
than unity before peak infection and smaller than unity
beyond peak infection. The serves as a useful measure
of the local rate of change of infectives at any point in
time. In Fig. (3) we provide estimates of (a) the mor-
bidity and (b) the excess mortality from the unchecked
spread of the epidemic. The fraction infected across age
groups is the largest for the 15-19 year olds and least
amongst the 75-79 year olds. However, due to the strong
age-dependence in death rates, mortality is amongst the
least for the 15-19 year olds and greatest for the 60-64
year olds. We emphasise that these numbers, alarming
as they are, are counterfactuals, as mitigation measures
are already in place of this writing. They do, however,
point to the unbearable cost in human life that must be
paid for the any lack of, or delay in, mitigatory action.

IV. IMPACT OF SOCIAL DISTANCING

We now investigate the impact of social distancing
measures on the unmitigated epidemic. We assume that
social distancing in any public sphere, which in our model
is partitioned into workplace, school and all others, re-
moves all social contacts from that sphere. This, of
course, transfers the weight of these removed contacts to
the household, where people must now be confined. We
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Figure 2. Forecast of the COVID-19 epidemic in India without mitigatory social distancing. Panel (a) shows the
number of confirmed cases of till 25th March 2020 (blue circles) and three-week forecast (red line) from a fit of our model.
Panel (b) extends this forecast to 5 months showing the number of infectives (red) and the number of susceptibles (blue). In
the absence of mitigation, an expected 0.9 billion people would be infected in total, with a peak infection of 167 million people
in 114 days as indicated by the green bar. Panel (c) shows the effective basic reproductive ratio Reff

0 (t) as a function of time.
This reduces to below unity beyond the peak infection. This forecast assumes all cases to be symptomatic so ᾱ = 1. The fit
parameter β = 0.0155 and we set γ = 1/7.

Figure 3. Estimates of morbidity and mortality with-
out mitigatory social distancing. The top panel shows
the distribution across age groups of the number of suscepti-
bles at the start of the epidemic (blue bars) and at the end of
the five month forecast (orange bars). Their difference is the
total number infected in that five month period. Greatest in-
fection is seen amongst the 15-19 year olds and least amongst
the 74-79 year olds. The bottom panel shows the number of
mortalities which, due to the strong age-dependence, is not
proportional to the number of infections. The parameters for
these estimates are identical to those in Fig. (2).

ignore this in the first instance. We interpret the lock-
down imposed from 25 March 2020 to remove all social
contacts other than the household ones. This is an op-
timistic interpretation but it does allow us to assess the
most favourable impact of such a measure. The results
that follow, then, are an expected best-case scenarios.
Then, the time-dependent social contact matrix at time
t is

Cij(t) = Cij − u(t)(CW
ij + CS

ij + CO
ij ) (1)

where Cij = CH
ij +CW

ij +CS
ij +CO

ij is the sum of all social
contacts comprising of contributions from the household,
workplace, schools and all others, with obvious super-
scripts. The control function, described in Appendix, is
constructed to reflect a social distancing measure that is
initiated at t = ton and suspended at t = toff. The mea-
sure has a lag tw to be effective which we choose to be
shorter than a day. The function varies smoothly from
zero to one in the window ton − toff . For repeated initi-
ations and suspensions, the control function is a sum of
such terms with times adjusted accordingly. It is possi-
ble, of course, to have differentiated controls which apply
distinct social distancing measures at different times and
for different durations. We do not explore these here as
the general setting for such an investigation would be
within the framework of optimal control theory [6] with
an appropriate cost function. We postpone this to future
work.

Our results are show in in the four panels of Fig. (4)
for four different control protocols. Panel (a) shows the
effect of the three-week lockdown. While this immedi-
ately changes the sign of the rate of change of infectives,
it does not reduce their number sufficiently to prevent
a resurgence at the end of the lockdown period. Panel
(b) shows the effect a suspension of the lockdown by 5
days followed by a further lockdown of 28 days. This too,
does not reduce the number of infectives sufficiently to
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Figure 4. Forecast of the COVID-19 epidemic in India with mitigatory social distancing. Each of the four panels
shows the variation in the number of infectives with lockdowns of various durations. The three-week lockdown starting 25
March does not prevent resurgence after its suspension as shown in panel (a). Neither does a further lockdown of 28 days
spaced by a 5 day suspension, shown in panel (b). The protocols in panels (c) and (d), comprising of three lockdowns with 5 day
relaxations and a single 49 day lockdown reduce case numbers below 10. This forecast is based on all cases being symptomatic
so ᾱ = 1. The fit parameter is β = 0.0155 and we set γ = 1/7.
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Case 1 Case 2 Case 3 Case 4

Mortality 2727 11 8 6

Table II. Estimates of mortality in a 73 day window
from 25th March with mitigatory social distancing.
Cases 1 through 4 correspond, respectively, to panels (a)
through (d) of Fig.4. The parameters are identical to those
in Fig. (4).

prevent resurgence. Panel (c) shows a protocol of three
consecutive lockdowns of 21 days, 28 days and 18 days
spaced by 5 days of suspension. This brings the num-
ber of infective below 10 where explicit contact tracing
followed by quarantine may be successful in preventing
a resurgence. Panel (d) shows a single lockdown period
to reach the same number of infectives which our model
predicts to be 49 days.

Table (II) show the excess mortality that can be ex-
pected for each of the social distancing measures above.
While we emphasise, again, that these are likely to be
best-case scenarios, the substantive message is that of
the crucial importance of rapid and sustained social dis-
tancing measures in reducing morbidity and mortality.

V. DISCUSSION AND CONCLUSION

We have presented a mathematical model of the spread
of infection in a population that structured by age and
social contact between ages. Since contagion spreads
through the structure of social contacts and the latter
varies with age, it is necessary to resolve both these as-
pects of a population in any model that attempts to un-
derstand and predict how the modification of the social
contact structure through social distancing impacts the
spread of disease. Such models become useful when re-
liable estimates of contact structures are available. We
have combined our mathematical model with the state-
of-the-art contact structure compilation of Prem et. al.
[2] and empirical case data available till the 25 March
2020 to assess the impact of social distancing measures
in the spread of the COVID-19 epidemic in India. Our
principal conclusion is that the three-week lockdown will
be insufficient. Our model suggests sustained periods of
lockdown with periodic relaxation will reduce the num-
ber of cases to levels where individualised social contact
tracing and quarantine may become feasible.

Our mathematical model contains both asymptomatic
and symptomatic infectives. Due to the paucity of data
on the number of asymptomatic cases we have chosen to
set these to zero. This provides a lower bound on the
number of morbidities and mortalities and the intensity
and duration of the social distancing measures that are
required for mitigation. Extensive testing of the popu-

lation can provide data on the number of asymptomatic
cases and this, when incorporated into our model, will
provide more accurate estimates of the progress of the
epidemic and the impact of mitigatory social distancing.
More generally, there are uncertainties in all parameters
of our model and these would translate into uncertain-
ties in forecasts and estimates. These uncertainties can
be reduced with better availability of case data and the
uncertainties can be quantified through Bayesian error
propagation analysis. The principal regional differences
in India appear to be in the time of initiation of the in-
fection and for the cases to reach the critical size where
community transmission begins. Though our model is
not spatially resolved, it can be applied region-wise by
fitting it to regional case data.

In closing, we issue the necessary caveats. To quote
G. P. Box, “Since all models are wrong the scientist must
be alert to what is importantly wrong. It is inappro-
priate to be concerned about mice when there are tigers
abroad” [7]. The three components of our study involve
the mathematical model, the sources of data, and the nu-
merical code. We have provided an explicit description of
our mathematical model, our data sources are referenced,
and our numerical implementation is open-sourced. We
take these to be essential desiderata for modeling to in-
form policy. The mathematical model of an infection can
aid in qualitative understanding and quantitative predic-
tion but it should not be used in isolation from other per-
spectives, including economic, medical, social and ethical
ones.

R.S. acknowledges the support of a Royal Society-
SERB Newton International Fellowship. RA thanks col-
leagues at King’s College, Cambridge for their encour-
agement and forbearance while this work was being com-
pleted.

APPENDIX A: MATHEMATICAL MODEL

Epidemiological model : We consider a population ag-
gregated by age intoM groups labelled by i = 1, 2, . . .M .
The population within age group i is partitioned into sus-
ceptibles Si, asymptomatic infectives Iai , symptomatic
infectives Isi and removed individuals Ri. The sum
of these is the size of the population in age group i,
Ni = Si + Iai + Isi +Ri [8–11]. We ignore vital dynamics
and the change in age structure on the time scale of the
epidemic. Therefore each Ni and, consequently, the total
population size

N =

M∑
i=1

Ni
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Figure 5. Contact structures of the Indian population and their eigenspectrum. The first two figures in the top
row show the contact structure in India in schools and other locations respectively. This completes the partial list of contact
structures in India shown in Fig.1. The third figure shows the sum of all contacts. The large number of contacts of 15-19 year
olds is consistent with their greatest rate of infection, show in in Fig. (3). The second rows show the eigenvalue of the L matrix
for ᾱ = β = γ = 1. The magnitude of the largest eigenvalue determines the basic reproductive ratio. The eigenanalysis helps
estimate this quantity for each of the structures contributing to social contacts.

remain constant in time. We assume that the rate of
infection of a susceptible individual in age group i is

λi(t) = β

M∑
j=1

(
Ca

ij

Iaj
Nj

+ Cs
ij

Isj
Nj

)
, i, j = 1, . . .M (2)

where β is the probability of infection on contact (as-
sumed intrinsic to the pathogen) and Ca

ij and Cs
ij are, re-

spectively, the number of contacts between asymptomatic
and symptomatic infectives in age-group j with suscepti-
bles in age-group i (reflecting the structure of social con-
tacts). We take the age-independent recovery rate γ to be
identical for both asymptomatic and symptomatic indi-
viduals whose fractions are, respectively, α and ᾱ = 1−α.
With these assumptions the progress of the epidemic is
governed by the age-structured SIR model

Ṡi = −λi(t)Si,

İai = αλi(t)Si − γIai , (3)

İsi = ᾱλi(t)Si − γIsi ,
Ṙi = γ(Iai + Isi ).

The age structure of the population is specified the pro-
portions Ni/N and the contact structure by the matrices
Ca

ij and Cs
ij . We assume that symptomatic infectives re-

duce their contacts compared to asymptomatic infectives
and set Cs

ij = fCa
ij ≡ fCij , where 0 ≤ f ≤ 1 is the

proportion by which this self-isolation takes place.

Social contact model : Partitioning contacts into
spheres of home, workplace, school and all other cate-
gories, the contact matrix can be written as

Cij = CH
ij + CW

ij + CS
ij + CO

ij . (4)

For populations of fixed size the contact matrices obey
the reciprocity relation NiCij = NjCji.

Social distancing model : We model large-scale social
distancing measures by time-dependent controls uW (t),
uS(t) and uO(t) imposed on the non-household contacts,
leading to the time-dependent contact matrix

Cij(t) = CH
ij + uW (t)CW

ij + uS(t)CS
ij + uO(t)CO

ij . (5)

This allows for each one of the possible social distancing
measures to be implemented at different points in and
for different durations. For a lockdown, corresponding to
the elimination of all social contacts other than household
ones, a single control function

2u(t) = − tanh

(
t− ton
tw

)
+ tanh

(
t− toff
tw

)
(6)

is sufficient. Staggered social distancing measures can be
constructed from linear combinations of these controls.

Basic reproductive ratio: We obtain the basic re-
productive ratio by linearising the dynamics about the
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disease-free fixed point, where Si = Ni, and the evo-
lution of infectives is governed by the 2M × 2M linear
stability matrix

J = γ(L− 1). (7)

The 2M × 2M next generation matrix

L =

(
Laa Las

Lsa Lss

)
consists of the M ×M blocks

Laa
ij =

αβ

γ
Ca

ij

Ni

Nj
, Las

ij =
αβ

γ
Cs

ij

Ni

Nj
, (8)

Lsa
ij =

ᾱβ

γ
Ca

ij

Ni

Nj
, Lss

ij =
ᾱβ

γ
Cs

ij

Ni

Nj
, (9)

and 1 is the 2M × 2M identity matrix. Collecting both
the asymptomatic and symptomatic infectives in the vec-
tor I = (Ia, Is) = (Ia1 , . . . , I

a
M , I

s
1 , . . . , I

s
M ), their dynam-

ics at early times is

I(t) = exp [γ(L− 1)t] · I(0). (10)

Expressing L in its spectral basis of eigenvectors V and
diagonal matrix of eigenvalues Λ = diag(Λ1, . . . ,Λ2M ) we
get exp [γ(L− 1)t] = V diag[exp γ(Λ− 1)t]V −1. For the
epidemic to grow, it is sufficient for the spectral radius of
L to be greater than unity. The basic reproductive ratio
is defined to be the spectral radius of L [12]:

R0 ≡ ρ(L) = max{|Λ1|, . . . , |Λ2M |}. (11)

If eigenvalue with the largest magnitude is real, the basic
reproductive ratio gives the most dominant contribution

exp [γ(R0 − 1)t]

to the initial growth of the epidemic. This shows that
the basic reproductive ratio depends on (a) the proba-
bility of infection on contact β; (b) the social contact
structure encoded in the matrix Cij ; (c) the fraction of
asymptomatic to symptomatic infectives α; and (d) the
fraction by which symptomatic infectives self-isolate f ,
i.e. a combination of pathogen-specific, social, and indi-
vidual factors. The linearisation above can be carried out
at any point in time t by making the replacements Ni −→
Si(t) and Cij −→ Cij(t) in the expression for L, giving
the time-dependent stability matrix L(t). We may define
the spectral radius of L(t) as the effective time-dependent
basic reproductive ratio

Reff
0 (t) ≡ ρ(L(t)) = max{|Λ(t)

1 |, . . . , |Λ
(t)
2M |} (12)

The linearised dynamics gives the number of infectives
at time t+ δt to be

I(t+ δt) = exp
[
γ(L(t) − 1)δt

]
· I(t). (13)

If the eigenvalue with the largest magnitude is real, the
effective basic reproductive ratio gives the most dominant
contribution

exp
[
γ(Reff

0 (t)− 1)δt
]

to the short time growth of the epidemic at time t. The
number of infectives will have a negative rate of growth if
Reff

0 (t) is reduced to below unity upon effecting the social
distancing measures. Therefore, Reff

0 (t) is diagnostic of
the instantaneous efficacy of social distancing measures
and can be computed from the eigenspectrum directly.
Assuming controls are imposed and relaxed periodically
and over durations short compared to intrinsic relaxation
times, the progress of the epidemic can be described as
a series of rising and (possibly) falling exponentials with
dominant time scales determined by the spectral radii
of L and L(t). To a first approximation, the dynamics
of the rise and fall of infections with the removal and
application of social distancing is governed by a pair of
exponentials. The rising time constant is γ(R0−1) while
the falling time constant is γ(Reff

0 (ton) − 1). From Fig.
(2)c it is clear that the spectral radii are approximately
constant away from peak infection times and, therefore,
the time-dependence of the Reff

0 (t) can be neglected to
first approximation.

Numerical integration: We choose M = 16 to corre-
spond to the 16 age groups into which the contact matrix
data is partitioned. The 3M = 48 ordinary differential
equations are then numerically integrated using the open
source Python library PyRoss which is freely available on
GitHub [13].

Data sources: The data of infected people is obtained
from the website Worldometers [14]. Age distributions
are sourced from the Population Pyramid website [3] and
social contact structures from the state-of-the-art compi-
lation of Prem et. al. [2] obtained from surveys and
Bayesian imputation.
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